

Effect of Di(2-Ethylhexyl)phthalate Administration on Rat Sperm Count and on Sperm Metabolic Enzymes

Abrar Siddiqui and Satya P. Srivastava

Industrial Toxicology Research Centre, Post Box 80, M. G. Marg, Lucknow-226, 001, India

Di(2-ethylhexyl)phthalate (DEHP) is extensively used in manufacture of flexible plastics. It. widely distributed in the environment and its potential health hazards have been extensively reviewed Tomita et al., 1982; Thomas and Thomas, Pollack et al., 1985). Recent interest in DEHP toxicity has focused on the male gonads (Curto and Thomas 1982). known to produce testicular atrophy antifertility effects in experimental animals (Gray and Butterworth, 1980; Autian 1982; Gangolli 1982; Fukucka al. 1989). Morphological and biochemical revealed that DEHP damages seminiferous tubules, have reduces the epididy**ma**l sperm count and alters activity of testicular enzymes sorbitol dehydrogenase lactate dehydrogenase (LDH), Y-glutamyl transpeptidase, \$ -glucuronidase and acid phosphatase, related to specific events of spermatogenesis (Parmar gonadotropins. al. 1986). Alterations in the serum testosterone levels and testicular zinc and contents have also been reported in testosterone induced toxicity (Foster 1980; Oishi and Hiraga 1980). The reduced epididymal sperm count may not be the or responsible for reported antifertility DEHP, because other factors such as sperm effects of movement also affect the fertility. would It is also possible that the biochemical and morphological changes occurring in the spermatozoa as a result of exposure to DEHP may affect their fertilizing capacity. The present study was undertaken to evaluate the effect of DEHP activity of certain energy-linked enzymes rat spermatozoa as little is known about the influence DEHP on sperm energy-metabolism...

Send reprint requests to Dr. S.P. Srivastava at the above address.

Effect of DEHP on the weight of epididymis and sperm count in rat Sperm count (X 106) 6.82+0.43* 8.20 ± 0.39 3.61+0.33* (g/100 g body weight) Values are mean + S.E. from six animals. *P < 0.05 when compared to controls by student's 't'test. Relative weight 0.29+0.02 $0.23\pm0.01*$ 0.28 ± 0.01 Absolute weight 0.46+0.04 $0.43\pm0.02*$ 0.50 ± 0.01 1000 mg/kg 500 mg/kg Table 1. Treatment Control

Effect of DEHP on the activity of lactate dehydrogenase, sorbital dehydrogenase and aldose reductase in spermatozoa of rat Table 2.

Treatment	Aldose reductase (n mole NADPH oxidi- sed/min/mg protein)	Sorbitol dehydrogenase (n mole NADPH oxidi- sed/min/mg protein)	Lactate dehydrogenase (n mole NADPH oxidi- sed/min/mg protein)
Control	1.61+0.12	5.47+0.23	45.2+2.83
500 mg/kg	1.28±0.10	5.01+0.26	51.6+2.94
1000 mg/kg	0.85+0.03*	3.92+0.19*	69,5+5,37*

Values are mean + s.e. from six animals. *P < 0.001 when compared to control by student's 't' test.

MATERIALS AND METHODS

albino rats (150-200 g) from the Toxicology Research Centre animal breeding colony three groups of six animals each and were in commercial pellet diet (Hindustan Bombay) and water ad libitum throughout the experiment. DEHP dissolved in groundnut oil was administered orally with the help of a feeding cannula at a dose of 500 or 1000 mg/kg body weight per day for 15 days. The control animals were given an equivalent amount of groundnut oil in an identical manner. The animals were sacrificed cervical decapitation 24 hrs after the last The epididymis was removed promptly and weighed.

Spermatozoa were isolated from the epididymis according to the method described by Brooks (1976). A portion spermatozoal suspension was diluted 10 times 2% formalin and sperm were counted bу the method described by Freund and Carol (1965). The remaining spermatozoal suspension was centrifuged at 800 g for 10 The sedimented spermatozoa were resuspended 0.25 sucrose, sonicated and used for assay enzymes. The activity of lactate dehydrogenase (SDH) sorbitol dehydrogenase and aldose reductase (ALRD) were determined by the method described by Srivastava et al. (1989) and Tanimoto et al. (1983)respectively. Protein was estimated according to method of Lowry et al. (1951) using bovine serum min (Sigma Chemical Co., St. Louis, MO, USA) as the standard

RESULTS AND DISCUSSION

There were no deaths or signs of overt toxicity in DEHP exposure to DEHP exposed rats. The significantly absolute and relative decreased the weight only at higher dose tested epididymis (Table 1). Administration of DEHP was found to reduce the sperm at both the dose levels studied (Table 1). effect of DEHP on the activity of LDH, SDH and ALRD is The activity of LDH in Table 2. was increased significantly while that of SDH and ALRD decreased animals exposed to 1000 mg/kg DEHP only.

Consistant with our previous report, the present study showed a decrease in epididymal sperm count in a dose dependent manner. This may be due to the effect of DEHP on various morphological and 'biochemical events related to spermatogenesis (Parmar et al. 1986). The decrease in epididymal weight observed may have been due to reduced number of sperm.

The energy requirements of the spermatozoa for the metabolic reactions are met by the reversible oxidation

reduction reactions catalyzed by dehydrogenases (Bishop, 1968). Fructose being the chief energy source for spermatozoa (Mann, 1964), its decreased production or altered oxidation would affect spermatozoa. ALRD catalyses bioenergetics of conversion of glucose to sorbitol and SDH catalyses conversion of sorbitol to fructose which subsequently oxidized through the glycolytic pathway. A decrease in the activity of ALRD and SDH, as observed in the present study, might lead to reduced production of fructose. An accompanying increase in LDH activity would therefore enhance the rate of oxidation of already depleted fructose reserves thereby promoting the generation of nonviable, poorly motile spermatozoa (Mann, 1964; Bishop, 1968).

The current investigation demonstrated that DEHP or its metabolites may interfere with bioenergetics of spermatozoa of rat. Further research is needed to show a relationship with decreased sperm function.

Acknowledgments. Authors thank Dr. P.K. Ray, Director, Industrial Toxicology Research Centre, Lucknow, for the keen interest he took in this study. This work is supported by CST, U.P. Authors are also thankful to Mr. Umesh Prasad for Computer Assistance.

REFERENCES

- Autian J (1982) Antifertility effects and dominant lethal assays for mutagenic effects of DEHP. Environ Hlth Perspect 45: 115-118
- Bishop DW (1968) Sorbitol dehydrogenase in relation to spermatogenesis and fertility. J Reprod Fertil 17: 410-411
- Brooks DE (1976) Activity and adrogenic control of glycolytic enzymes in the epididymis and epididymal spermatozoa of the rat. Biochem J 156: 527-537
- Curto KA, Thomas JA (1982) Comparative effects of diethylhexyl phthalate or monoethylhexyl phthalate on male mouse and rats reproductive organs. Toxoicl Appl Pharmacol 62: 121-125
- Foster PMD, Thomas LV, Cook MW, Gangolli SD (1980) Study of testicular effects and changes in Zn excretion produced by some n-alkyl phthalates in the rat. Toxicol Appl Pharmacol 54: 392-398
- Freund M, Carol B (1965) Factors affecting haemocytometer counts of sperm concentration in human semen. J Reprod Fertil 8: 149-155
- human semen. J Reprod retti 5. 12.

 Fukucka M, Tanimoto T, Zheu Y, Kawasaki N, Tanaka A, Ikemoto I, Machida T (1989) Mechanism of testicular atrophy induced by di-n-butyl phthalate in rats. Part I J Appl Txicol 9: 277-283

- Gangolli SD (1982) Testicular effects of phthalate esters. Environ Health Perspect 45: 77-84
- Gray TJB, Butterwoth KR (1980) Testicular atrophy produced by phthalate esters. Arch Toxicol Suppl 4: 452-455
- Lowry OH, Rosebrough NJ, Farr AL, Randoll RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193: 265-275
- Mann T (1964) The biochemistry of semen and of the male reproductive tract. Methuen & Co. Ltd., London.
- Oishi S, Hiraga K (1980) Testicular atrophy induced by phthalic acid esters. Effect on testosterone and Zn concentrations. Toxicol Appl Pharmacol 53: 35-41
- Parmar D, Srivastava SP, Seth PK (1986) Effect of di(2-ethylhexyl)phthalate (DEHP) on spermatogenesis in adult rats. Toxicology 42: 47-55
- Peakall DB (1975) Phthalate esters: Occurence and biological effects. Residue Rev 54: 1-41
- Pollack GM, Buchanan JF, Slaughter RL, Kohli RK, Shen DD (1985) Cicrulating concentrations of di(2-ethylhexyl) phthalate and its deesterified phthalic acid products following plasticizer exposure in patients receiving hemodialysis. Toxicol Appl Pharmacol 79: 257-267
- Srivastava S, Seth PK, Srivastava SP (1989) Effect of styrene adminsitration on rat testis. Arch Toxicol 63: 43-46
- Tanimoto T, Fukuda H, Sato H, Kawamura J (1983) Sorbitol pathways in lenses of normal and diabetic rabbits. Chem Pharm Bull 31: 204-208
- Thomas JA, Thomas MJ (1984) Biological effects of di(2-ethylhexyl)phthalate and other phthalic acid esters. CRC Crit Rev Toxicol 13: 283-317
- Tomita I, Nakamura Y, Inui N (1982) Mutagenic/carcinogenic potential of DEHP and MEHP. Environ Health Perspect 45: 119-125.

Received June 21; Accepted July 5, 1991